

Overview of the Program and Command Environment

With the
Executable Program Format (EPF)

And
Virtual Memory File Access (VMFA)

David Udin

Table of Contents

1 Introduction..1

2 Executable Program Format...1
 2.1 Format..2
 2.2 BIND..3
 2.3 Relation to VMFA..4
 2.4 Future Development..4

3 Programs, Libraries, and the Command Environment....................5
 3.1 Programs and Static Storage.....................................5
 3.2 When to Initialize..6
 3.3 What to Initialize..8
 3.4 Categories of Libraries...8
 3.5 Classifying the Effects of Programs.............................9
 3.6 Treatment of EPF Libraries by the Command Environment..........11
 3.7 Tailored Command Environments..................................12

4 Virtual Memory File Access...13
 4.1 Files as Virtual Memory Objects................................13
 4.2 Directories as Virtual Memory Objects..........................14
 4.3 Opening and Closing Files......................................15
 4.4 Atomic Operations..16
 4.5 File Growth and File Size......................................16
 4.6 Temporary Storage and the Process Directory....................18
 4.7 Networks...19
 4.8 Miscellaneous Benefits of the Implementation...................19

5 Miscellaneous Topics...21
 5.1 An Alternative Way to Detect the Boundary of a Program
 Invocation...21
 5.2 Relation to Static Mode..22

ENVIRONMENT OVERVIEW Page 1

PRIME COMPUTER CONFIDENTIAL

Overview of the Program and Command Environment
With the

Executable Program Format (EPF)
And

Virtual Memory File Access (VMFA)

David Udin

1 Introduction

The introduction of the executable program format and virtual memory
file access allow us to significantly strengthen principles of software
architecture that previous developments have been directing us towards.
The advances are in the ability to use programs in a subroutine-like
manner, in the ease of preparing collections of procedures for binding
at run-time, and in the ability to use the file system as an extension
of virtual memory.

I assume the reader of this document has some familiarity with the
current program environment and with the overall nature of Prime V-mode
architecture.

2 Executable Program Format

The Executable Program Format is a new format for a run-file, the
object that represents an executable program, analogous to the V-mode
SEG run-file or the R-mode saved file. Unlike the SEG run-file or the
R-mode saved file, which represents a program as a memory image of both
procedure and data, an EPF represents a program as an image of the
procedure portion, and a description of the data portion (link frames
and COMMON) to be constructed before running the program.

(I use EPF as an abbreviation both of Executable Program Format and of
Executable Program Format file, that is, a file in this format; it
should be clear from the context which use is intended.)

The significant features of the new format and of its treatment by
PRIMOS are:

 o An EPF can be directly mapped into virtual memory (by VMFA)
 without modification.

 o A segment of an EPF can be assigned any address at run-time. The
 linkage described by an EPF can be constructed (almost) anywhere.
 Consequently, EPF’s can coexist with each other in memory and be
 shared among processes without permanent reservation of addresses
 or installation in public address space.

 o All of the information about a program is in its EPF and can be
 made available in memory at run-time.

ENVIRONMENT OVERVIEW Page 2

PRIME COMPUTER CONFIDENTIAL

 o The command environment will map into memory and initialize for
 execution programs and commands constructed as EPF’s: there is no
 need to invoke a command to transform and invoke and EPF.

 o Run-time libraries can be built and installed in the format.
 Libraries especially benefit from the location-independence of the
 format. A library built as an EPF automatically includes a hash
 table of its entry points for searching by the dynamic linking
 machinery.

2.1 Format

The principal components of an EPF file are the procedure segment
images and the description of the linkage areas to be constructed when
the EPF is invoked. Other components are the entry point table, load
map, and information for the source level debugger.

The EPF is contained in a DAM file, formatted as a sequence of segment
images that can be mapped directly into virtual memory by VMFA. The
segments of the EPF need not be assigned consecutive addresses in
memory; each is separately relocated according to the availability of
address space at run-time. All but the last of the EPF’s segment
images must be a full 64K in length; that is, segments begin on 64K
boundaries in the file, a constraint imposed by VMFA (see section 4).

The first segment of the EPF contains a few words of information about
the size and structure of the EPF and the program it represents, and a
pointer to the structures containing the descriptive portion of the
EPF. The first EPF segment is also the first procedure segment image.
If the EPF includes more than one procedure segment they are the
segments immediately following the first. Immediately following the
procedures in the last procedure segment image is the beginning of the
descriptive material: linkage descriptors, entry point table, load
map, and debugging information. Thus, if the program is a short one, a
single segment might serve to hold all of the EPF.

There are no references within an EPF by absolute addresses;
typically, there are no absolute addresses in an EPF at all. All
inter-segment references within the EPF and all references outside the
EPF are through indirect pointers, residing in link frames, which will
be filled in at run-time. Inter-segment references within the EPF will
be relocated when the EPF linkage is being constructed when the program
is invoked; references external to the EPF (which have their fault bit
set) will be relocated when the fault is encountered and the address
determined and filled in by the PRIMOS dynamic linking mechanism.
Thus, the format allows the operating system to assign a procedure
segment image to any available segment address.

Link frames and COMMON areas are collected into linkage areas which are
relocated as a unit. Grouping this material into contiguous storage
allows sharing of faulted external references to reduce the overhead of
dynamic linking. Usually a linkage area will be less than a segment
long. Multi-segment linkage areas are used only where at least one of
the objects in it is longer than a segment and thus requires long

ENVIRONMENT OVERVIEW Page 3

PRIME COMPUTER CONFIDENTIAL

addressing anyway. A linkage area less than a segment in length can be
constructed at run-time in any region that lies within a segment. This
word relocatability is provided because, for a small increment of cost
over the cost of segment relocatability (which is necessary anyway), it
permits combining linkage for several EPF’s into a single temporary
segment at run-time. A minor constraint on the relocatability of
multi-segment linkage areas is that they must be aligned with segment
boundaries.

Because there is no modification of the procedure segment images to
relocate them, and because the linkage is constructed in storage
allocated at run-time and not in the EPF itself, the EPF can be
read-only and shared among processes as well as mapped into different
addresses in each process using it, all without special effort on the
part of the system designer. Furthermore, one invocation of an EPF can
be suspended and the EPF invoked again in the same process with a
different copy of the linkage areas without interfering with the
suspended invocation. This means that commands built as EPF’s can
behave like internal commands, interacting only in well-defined
(presumably intended) ways, rather than through their accidental
interference in memory. I will discuss this further in the section on
the command environment.

Library EPF’s contain a hash table of names of external entry points;
program EPF’s contain a main entry point. An EPF can have both and be
used interchangeably or, indeed, simultaneously as both a main program
and a collection of subroutines to be linked to at run-time. The
distinction is contextual: the main entry is used if the EPF is
invoked as a command; the other entry points are used to satisfy
pointer faults to “dynamic entries”. More on this distinction in the
section on the command environment.

As with the SEG run-file, all the information about the program needed
for any purpose at run-time is in the EPF; however, unlike the SEG
run-file, all the information in an EPF can be referenced in virtual
memory, relative to the actual addresses assigned the EPF, once the EPF
has been mapped into memory. (It may be necessary to request
completion of the mapping of a large EPF where some of the segments,
e.g. those containing the debugging information or the load map, have
been left out of virtual memory until required.)

2.2 BIND

BIND is the command for producing EPF’s from compiler object text.
Because the nature of EPF’s and their treatment by PRIMOS is such that
one rarely specifies where programs are to be loaded, BIND’s user
interface can be much simpler than SEG’s. We expect that most of the
time all that will need to be specified to BIND is the list of object
files that are to be made into an EPF and the name of the result, and
those can be specified in the command line to BIND. There is also a
command mode to BIND for specifying additional information, such as the
names of entry points when building a library EPF.

ENVIRONMENT OVERVIEW Page 4

PRIME COMPUTER CONFIDENTIAL

2.3 Relation to VMFA

EPF’s do not depend on VMFA for their existence or use. VMFA does
provide direct inclusion of an EPF in address space, sharing
(simultaneous use of an EPF by more than one process), and support for
the larger address space that might be necessary for extensive use of
activities that EPF’s make possible: nested invocation of external
commands and use of per-process dynamically-linked libraries. Features
provided by full VMFA could be provided by other means and, in fact,
will initially be provided by a very restricted version of VMFA (read
accesss to existing files only).

2.4 Future Development

One very important feature missing from the initial implementation of
EPF’s is a representation of dynamically linked or dynamically created
data areas. With this feature it would be possible to specify
deferring creation of data areas (e.g. Fortran COMMON areas) until
reference, and to specify linking at run-time to data external to the
EPF. (Initially, it can be done in somewhat restricted ways by
subterfuge.) Support for this feature in EPF’s has been designed and
will eventually be included. Support for this feature in the command
environment has not been designed: the question is how to specify in a
sensible, natural way the association of internal names with external
objects (usually files).

There are two reasons for desiring run-time linking to data. First,
subroutines that refer to the same COMMON areas can be bound into
different EPF’s. Second, mapping of language objects to file system
objects can be performed without explicitly including in programs
operating system requests that are sensitive to machine architecture
and calling sequence.

ENVIRONMENT OVERVIEW Page 5

PRIME COMPUTER CONFIDENTIAL

3 Programs, Libraries, and the Command Environment

What are the ingredients the command environment must contend with? An
EPF represents part or all of an uninitialized program or run-time
library. A program is not confined to a single EPF; it can link at
run-time to, and thus include, subroutines from other EPF’s. Before
the EPF can be executed the operating system must assign it to
addresses and construct the linkage regions that go with it. Using an
EPF doesn’t necessarily wipe out the previous one the way using today’s
run-files usually does; both the representation of the uninitialized
program or library (the EPF) and the initialized linkage material from
a previous invocation can linger in address space. Thus the operating
system must discover program boundaries, determine when to initialize
(or re-initialize) an EPF, and decide when it is necessary or desirable
to discard used linkage areas.

3.1 Programs and Static Storage

What is the extent of a program? It is a main program and all the
subroutines it calls and all the subroutines they call and so on;
“transitive closure under procedure call” for you mathematicians,
“program baggy” for those of you who like catchy names. The lifetime
of an invocation of a program is from the call of the main program to
its return.

Associated with a program is a certain amount of static storage:
COMMON or external static and link frames with their static variables,
entry control blocks, indirect pointers, etc. Some of the static
variables may have been specified to have an initial value. All of the
static storage must persist until the program is finished running.
Thus, sometime before a subroutine in the “program baggy” is entered
for the first time its static storage must be allocated and
initialized. That storage must persist for the lifetime of the
program, which is defined to be until the main program returns. If the
main program returns and is invoked again, the static storage for any
subroutine in its baggy must be re-initialized before the subroutine is
entered in this subsequent invocation. Whether the storage from the
previously completed invocation was reclaimed and new storage allocated
and initialized for the second, or whether the storage from the first
was retained and simply re-initialized in between program invocations
is irrelevant to the correctness of the treatment of static storage;
however, it may have important consequences for the performance of the
system, as I will discuss later.

Up until now I have used the term “invocation” somewhat loosely. Let
us define “invoke” to be what you do to a program, as opposed to
calling a subroutine. That the actual transfer of control to a program
may be implemented with a procedure call instruction in the machine
does not affect the distinction; the distinction is based on the
treatment of static storage: invocation requires that static storage
be placed in its initial state; subroutine call does not.

ENVIRONMENT OVERVIEW Page 6

PRIME COMPUTER CONFIDENTIAL

(Note that MULTICS does not make this kind of distinction between
invocation and procedure call. In MULTICS there is only the concept of
the procedure call, and thus, by our definition of program, there is
only one program per process. Static storage for any subroutine in
that program/process is allocated and initialized only once and
persists until the subroutine is explicitly removed or the process is
explicitly reset to its initial state. We choose to make the
distinction because it corresponds to the distinction between programs
and subroutines in today’s environment (MULTICS had to incorporate a
special mechanism to run FORTRAN programs), and because it results in
more predictable behavior of nested program invocations. More on this
in the discussion of command levels.)

A subroutine linked to at run-time (that is, a subroutine in a library
EPF) is functionally no different from a subroutine incorporated by
BIND into an EPF with the main program: before a subroutine in a
library can be called as part of a program an initialized copy of the
static storage it uses must be constructed. If the subroutine is
called by a different program invocation during the lifetime of the
first one (as might happen if the first program is suspended by a QUIT,
and the same program or another invoked) then it must be called with a
different initialized link frame. The only difference between
subroutines in the same EPF and subroutines in different EPF’s but
called as part of a single program invocation is the time of their
initialization: all the linkage material for an EPF will be
constructed and initialized at the time of first linking to some
subroutine in it. Subroutines linked to subsequently from the same
invocation will use that same linkage. In other words, the EPF is the
unit of initialization.

3.2 When to Initialize

What indicates the boundaries of a program invocation to the command
environment? Program invocations are defined to be distinct if
executed at different command levels or if executed serially in time
within a level. In other words, we require that to suspend a program
or to otherwise perform a nested invocation of a program you must move
up a level in the command environment. There must be an explicit call
to create a new level, an error signal, or a QUIT in order to indicate
to the command environment that the program under execution is to be
suspended, not discarded. A suspended program invocation is retained
until control returns to that level (by returning or proceeding from
the level above) or until the entire level is released. The other side
of requiring the user (or a program) to explicitly tell the environment
to not discard a program invocation is the assumption that if a user
invokes a command at some level he is finished with the command
previously invoked at that level and the command environment is free to
discard it. Note that by waiting until the next command is uttered at
a level to discard the previous program invocation, rather than
discarding it immediately on return from the program, we give the user
a chance to obtain a new level (by a QUIT, for example) from which to
perform a post-mortem on the storage of a completed program.

ENVIRONMENT OVERVIEW Page 7

PRIME COMPUTER CONFIDENTIAL

How does the operating system tell when to allocate and initialize
static storage for a particular EPF, which may or may not already be
mapped into address space and may or may not already have one or more
copies of its static storage hanging around? One way the operating
system could do this is to discard all the linkage material previously
allocated by a command level every time a new program is invoked at
that level. Then when a fault in a pointer to an external reference is
being processed (called “snapping a link”) software need only check to
see if the library EPF containing the entry point that satisfies the
faulted link has an initialized copy of its static storage at the
current command level. If it has, use it. If it hasn’t, allocate and
initialize storage, and remember somewhere that it has a copy of static
storage for that library at that level. The drawback of this approach
is that the command processor keeps reclaiming and re-allocating
storage for a library in frequent use.

Instead, each command level maintains a “program sequence counter”, and
each time the command level invokes a program it increments it. When a
library EPF is linked to for the first time at a level and static
storage allocated and initialized, the counter is saved in a data
structure associated with that level’s use of the library. Thereafter,
whenever a pointer fault at that command level leads to that library
the saved program sequence counter is compared with the level’s current
program sequence counter; if it is different it means the fault comes
from a new program invocation, and the library is re-initialized and
the saved counter updated; if it is the same it means the fault comes
from the same program invocation as the library’s static storage, and
the link is made without initialization, and the saved counter is left
unchanged. In other words, the saved counter serves to identify which
program invocation the current version of static storage for an EPF
“belongs to”. If we have advanced to a new program, the static storage
is out of date and needs re-initialization. Otherwise, it is still
current and should be left alone. A separate program sequence counter
and list of initialized libraries is maintained at each level so that
use of libraries at different levels, which we know must be by
different program invocations, is independent, that is, uses different
copies of static storage.

The overall result is that for a given EPF different levels will
allocate different storage and thus allow suspension of a program
invocation and simultaneous use of part or all of its constituent EPF’s
at a higher level without interfering with the suspended invocation.
For a given library EPF used by different program invocations at the
same level, the level will simply re-initialize storage it has
previously allocated.

In the first implementation we are going to assume that programs are
not re-used sufficiently frequently to warrant retaining their storage
the way we do for run-time libraries; the command level will simply
discard storage for an EPF invoked as a main program as soon as the
next program invocation is made at that level. It is a trivial matter
to change the implementation to allow storage for main program EPF’s to
linger in address space and be re-initialized and used at subsequent
invocations of the same program if we find that there is anything to be

ENVIRONMENT OVERVIEW Page 8

PRIME COMPUTER CONFIDENTIAL

gained by it. Furthermore, one can get the same effect by installing
most of a commonly used program as a library with a very short program
EPF serving only to call the library version, much as the shared editor
is treated today.

3.5 What to Initialize

Re-initialization of static storage used by a previous invocation of a
program must include resetting faulted indirect pointers, as well as
giving variables their requested initial values. This is because the
fault is the only way that the operating system has to detect that a
library is about to be entered as part of a program invocation. For
example, if program P calls library A a fault occurs when a reference
is made to the indirect pointer (IP) referenced by the call. The
dynamic linking software finds the location of the entry to the
library, initializes the EPF containing it if necessary, and places the
address in the IP and resets the fault bit. If the routine in library
A calls some routine in library B there will also be a fault, causing
that library to be prepared and the link to it from A to be snapped.
At this point if P were to call some routine in B the link would be
snapped, but B would not be initialized, because it has already been
initialized as part of P’s program invocation; that is, B’s saved
program sequence counter matches the level’s current value. Now
suppose P completes and another program, Q, is invoked which calls A,
causing A to be re-initialized because Q is a new program invocation,
reflected in a program sequence counter greater than the one saved with
the last initialization of A. If this initialization of A does not
reset the faulted IP’s (“unsnap the links”) in A’s linkage, a reference
through a previously snapped link to B will not cause a fault and the
operating system will not notice that the static storage for B is out
of date and in need of initialization. (Worse still, if A called both
this snapped link to B and some other, as yet unsnapped, link to B, it
would cause an initialization at an inappropriate time.)

3.4 Categories of Libraries

Suppose a library doesn’t have any static working storage; why keep on
re-initializaing it? For a library with no static storage we allow
designating its EPF as a “process-class” library. A library so
designated will only be allocated storage for linkage and initialized
once in the lifetime of a process (and thus the name “process-class”).
Subsequent dynamic links to such a library will not cause
re-initialization, regardless of the level or program invocation from
which they come. Since outward dynamic links from such a library
(which are in static storage, of course) will also never be
re-initialized, we don’t allow links from a process-class library to
ordinary libraries (“program-class” libraries), because it would
interfere with the detection of program boundaries. For example,
suppose a program invocation links to a process-class library, causing
allocation and initialization of its static storage. The process-class
library then in turn links to a program-class library during that first
invocation. When the first invocation returns, another program is
invoked and happens to link to the same process-class library the first
one linked to. But this time the process-class library is not

ENVIRONMENT OVERVIEW Page 9

PRIME COMPUTER CONFIDENTIAL

re-initialized, so if it calls the same program-class library it did
the last time there will not be a pointer fault, and the program-class
library will not be re-initialized even though it is being used as part
of a different program invocation. Furthermore, if the level of the
program-class library were released, giving up all its static storage,
the pointers to any entries in it from the process-class library would
be left dangling.

Since a subroutine in a process-class library can be suspended by a
QUIT and later entered from a higher command level it is safest to not
have any static working storage in such libraries. But it is not
required that that be the case: one could write a library subroutine
that counted the number of times is was called, for example. (But note
that you would have to be careful to suspend QUIT’s or use a
store-conditional instruction at the critical point of reading and
updating the counter.)

There is also a “level-class” of library. Static storage for such a
library is allocated and initialized only once at a given command
level. The consequence is that a level-class library can use static
storage, and the storage will not be interfered with by use of the
library at other command levels, but the storage will not be
re-initialized between program invocations within the level. Thus the
static storage of such libraries can be used to transmit information
between serial program invocations within a level. Another use for
this class of treatment of static storage is for a library which uses a
significant amount of static storage but which initializes the storage
itself, rather than depending on the operating system initializing its
storage. An editor in this form could: 1) be used as a subroutine, 2)
be used at any level, even if it had been quit from at a suspended
level, and 3) be re-initialized more efficiently by code internal to it
rather than be re-initialized by the pointer fault software following
the description in the EPF. As with process-class libraries, we don’t
allow linking from level-class to program-class libraries because it
interferes with the detection of program boundaries by link faults and
because it would lead to dangling pointers if the command level were
released. We do allow linking to process-class libraries from
level-class libraries, however.

3.5 Classifying the Effects of a Program

It should be clear by now that the treatment of storage associated with
an EPF and the location-independence of an EPF strengthen the role of
the command level: a significant result of the introduction of EPF’s
and the associated changes to command processing (VFMA, too - more on
this later) is that it becomes straightforward to make use of whole
programs as readily as using a subroutine. For example, any
interactive subsystem that is an EPF and follows the “recursive” rules
could have a subsystem command for executing a PRIMOS command without
“leaving” the subsystem environment with a QUIT or similar escape.
While programs should no longer interfere with each other by the
accident of their location in memory, there are still many spheres in
which they can legitimately interact. I think it is helpful to
categorize those areas of interaction in a hierarchical manner.

ENVIRONMENT OVERVIEW Page 10

PRIME COMPUTER CONFIDENTIAL

Outermost is the system environment, containing everything shared among
processes: file system, semaphores, networks, virtual memory in DTAR0
and DTAR1, service processes like the line printer spooler, and so
forth. We could further subdivide this environment, perhaps, but it
wouldn’t make much difference from the point of view of a process
running on a machine, which is our principal concern here.

Next in the hierarchy is the process environment, containing all that
is global to a process: the file units, the private portion of virtual
address space (DTAR1 and DTAR2), the terminal, assigned devices, global
command variables, home and current UFD’s, abbreviations, semaphores,
static storage of process-class libraries, and so forth.

Next in the hierarchy is the level environment, any number of which may
coexist simultaneously, the topmost of which is active: the one the
user is talking to when he is issuing commands. Programs invoked at
different levels should interact only through their effect on the
process environment. At a given level, a program invocation may affect
subsequent ones by its effect on the level environment, but at this
stage of PRIMOS development there is not much in the level environment
for programs to interact through. (It includes a QUIT inhibit counter
and static storage for level-class libraries.) In essence, the current
emphasis is on using levels to isolate a suspended program invocation;
in the future we might also wish to put some emphasis on serial
continuity of programs within a level, such as by including some kind
of stream notion for communicating the output of one command to the
input of the next.

Innermost of these environments is the program environment, of which
there is one per level at any given time. These interact only through
their effect on the process environment and through the environment of
the level within which they are executed. programs that are executed
as different levels can only affect each other through the process
environment; programs at the same level can interact through their
effects on both the process environment and the level environment. The
program environment consists of static storage for its single program
invocation.

The kind of independence we are talking about here is conceptual.
Since all of these environments coexist in virtual memory in the same
machine protection ring (ring three) they are not prevented from
accidentally mutilating each other, but if the programs obey the rules
one can suspend one program and execute another and then return to the
suspended program without interfering with it in unforeseen ways. In
other words, a program should have some “official” effects on the
system, process, perhaps the level, and whatever it communicates
directly to the user. Those effects are the purpose of the program;
anything else should be considered as unwanted side-effect. To be able
to say that a program has “no effect” on some part of the environment
is not to say that it does nothing to the environment, only to say that
it follows rules such that it returns the environment to its initial
state. For example, if a program uses dynamic assignment of file units
and closes any unit it opens, one can say that it has no net effect on

ENVIRONMENT OVERVIEW Page 11

PRIME COMPUTER CONFIDENTIAL

the file units. If it operates on some specific unit, however, those
operations are part of the prescribed effects of running the program:
if you don’t describe those effects as part of the purpose of the
program, they can only be considered as unwanted “side effects”: a
bug. Similarly, temporary storage should be obtained from and returned
to the operating system explicitly: getting segments by simply
referencing specific addresses plays havoc with the nested view of
levels.

3.6 Treatment of EPF Libraries by the Command Environment

The new executable program format incorporates the information
necessary for run-time linking to a subroutine in a library EPF and
removes the need for fixed address assignments for a shared library and
its associated linkage. The BINDer will produce a library EPF without
the need for sophisticated knowledge on the part of the library’s
creator. VMFA makes it possible to share without the use of public
memory and use an EPF without making a copy of it. These new
capabilities greatly lower the threshold of sophistication and
administrative nuisance required to employ PRIMOS’s version of dynamic
linking; we are also introducing a modest increase in the flexibility
of specifying the search order of run-time libraries.

In addition to supporting the current library mechanism, we will
introduce a system-wide library search list, which serves the same role
as the current search mechanism but for EPF libraries, and we will
introduce a per-process library search list for the individual
specification of libraries to be searched. The per-process search list
makes possible the use of run-time linking without full public access
to the set of routines; access to a library for inclusion in a
per-process search list is controlled by the normal file system access
control mechanisms. It also makes it possible for a process to
substitute its own version of a library for a system-wide library.
These new features should have a considerable impact on use of “dynamic
binding” in our systems.

It is not intended that this method is all of what some people mean
when they talk about “dynamic binding” and “search lists”. In
particular it differs from MULTICS in that it searches specified
libraries, not specified directories. Furthermore, the (initial) lack
of dynamic binding of data will typically result in larger modules,
require more careful consideration of the packaging of modules for
run-time binding, and require explicit design attention to the role
that dynamic binding will play in each specific application.

3.7 Tailored Command Environments

The new standard command environment, with EPF’s and VMFA, is but one
of many possible environments. It is oriented towards running programs
developed under today’s conventions for the treatment of static
storage, with some inexpensive but powerful extensions. It is
implemented in such a way that command environments tailored to
different orientations can be implemented using components of the
standard environment as building blocks and can coexist with processes

ENVIRONMENT OVERVIEW Page 12

PRIME COMPUTER CONFIDENTIAL

using the standard environment. The procedures to support a new level
environment are accessible, as are the routines for mapping an EPF into
address space, for allocating and initializing storage for an EPF’s
linkage, for re-initializing and EPF’s linkage, and for reclaiming an
EPF’s static storage and the address space the EPF itself resides in.
One could use these routines in different arrangements to build special
purpose environments. For example, a transaction processing monitor
might limit the environment to a single level and represent each
transaction as a separate EPF and retain or discard EPF’s and static
storage in memory according to anticipated or observed usage patterns.
A debugging environment might keep more information about routines
dynamically bound so that a routine could be individually
re-initialized or replaced. One might also use the environment and EPF
routines exactly as the standard environment does, but change the
command syntax.

ENVIRONMENT OVERVIEW Page 13

PRIME COMPUTER CONFIDENTIAL

4 Virtual Memory File Access

Virtual Memory File Access removes the layer of protocol and data
copying that lies between a user process and data on the disk. The
fundamental operation is to associate a segment address in virtual
memory with a segment object in the file system. Once the association
has been made, references to addresses with that segment number are
references to the file contents. The only complications to this simple
picture come from the fact that our file system is not just directory
structures and data but is also a set of concurrency protocols, and
from the mismatch between the file system’s treatment of file size and
the P400 architecture’s treatment of segment size.

In the following treatment I use the term “file system” to refer to the
disk structures and the associated lockout, access control, and quota
protocols. I use the term “unit-based file system” (UBFS) for the
current collection of procedures used to access the file system.
“Virtual memory file access” refers to the new method of accessing the
file system by mapping files and directories into a process’s virtual
address space.

4.1 Files as Virtual Memory Objects

In our file system a file (or sub-file of a segdir) is simply a linear
array of words. VMFA views such a file as a linear array of segments
all but the last in the file 64k words in length; the last segment of
the file may be shorter than a full segment in length. (In other
words, “no holes”.) Note the distinction between a segment - a piece
of data - and an address - a location data may be assigned in virtual
memory. Any contiguous block of segments from a file may be assigned
to some contiguous block of segment addresses in a process’s address
space, limited only by the availability of address space. Because
different programs within a single process may access a file
“concurrently” (more precisely, one program may map and reference the
segment and then be suspended while another program maps and references
the segment, and then the original program might be reactivated and
make further references to the segment), and because a segment cannot
be moved if a suspended program has knowledge of its assignment in
memory, it is not good programming practice for one program to treat an
object as a disconnected collection of segments where another program
maps the same object into a block of addresses. Should one program map
a segment from a file into an address and be suspended before
completion, and another program goes to map that segment as part of a
contiguous multi-segment object, and the adjacent addresses are not
available, the previous mapping cannot be changed without disrupting
the suspended program. This restriction should not be a significant
constraint on programming style.

Once a segment has been assigned an address, that address can be used
as an identifier of the segment and of the file it is part of in
further transactions with the operating system. Thus, in processing a
file, the name of the file need be supplied to VMFA once: as long as
some segment of the file has an assigned address that address can be
used to identify the file in further mapping operations.

ENVIRONMENT OVERVIEW Page 14

PRIME COMPUTER CONFIDENTIAL

4.2 Directories as Virtual Memory Objects

The use of an assigned address as the identifier of a segment is
especially useful in the treatment of directories, which may be
assigned addresses just like any other file. Once a directory has been
assigned an address, that address, not the pathname, is used to
identify the directory. This greatly simplifies calling sequences to
VMFA - no pathnames - and provides a large number of “attach points” -
as many as you care to allocate address space for - since a virtual
address may serve as a shorthand identifier for a point in the file
system’s directory tree.

For compatibility with the current user interface to the file system we
retain the concepts of “home” and “current” directory, which may be
specified in calls to VMFA by dummy virtual addresses. Otherwise, with
VMFA there is no need for software to change home or current directory
unless that is part of the software’s prescribed effects. Thus,
software that operates on different points in the file system (like a
file copy utility) need never leave the user attached away from the
directory he was attached to when he invoked that software, even if the
program terminates abnormally. Well-designed software will, however,
incorporate a “cleanup” condition handler to remove from address space
directories it has mapped into virtual memory. (More on cleanup
later.)

Since directories may contain security information - passwords - and
since the contents of a directory may be changed by one process while
another is reading it, no ring three access rights are given to
directories. Information in a directory may be read by one of two
methods: the unit-based file system’s entry-at-a-time protocol and a
new method introduced with VMFA which gives the entire directory
contents at the time of the call. The new method allocates a segment
to hold the directory snapshot and copies the contents verbatim leaving
out only security information. While this may seem to violate
principles of “information hiding”, any format we might choose to
translate the directory contents into would only have to be translated
again or otherwise processed in its ultimate use, rendering VMFA’s
translation redundant. Furthermore, hitherto changes to directory
format have consisted of introducing additional information into
existing entry types and adding new entry types, a kind of change that
the next layer of software can be made insensitive to.
Format-independence can still be achieved by using the unit-based file
system’s protocol or by establishing a new level of information-hiding
between the VMFA snapshot and the ultimate user. This layer could
incorporate other features like wild-card filters, sorting, and so on.

ENVIRONMENT OVERVIEW Page 15

PRIME COMPUTER CONFIDENTIAL

4.3 Opening and Closing Files

In the unit-based file system the “open” operation serves two purposes:
giving the user an identifier with which to specify the file in read
and write operations, and registering the user as a reader or writer
for the purpose of locking out conflicting users. We have transferred
both of these purposes to the “make known” operation (that is, assign
an address to a segment) by using the address of a segment as its (and,
in some contexts, the file’s) identifier and by defining a user to have
a file open as long as any segment of the file is in his address space.

As a consequence, the user need not perform any extra operation to
register himself as a user of the file for lockout purposes. On the
other hand, any software which needs to take concurrent usage of files
seriously must take care to keep at least one segment of the file in
its address space whenever it does not want to allow another user to
open it for a conflicting use. Thus when traversing a file such
software will typically make known the next segment it will process
before making unknown the segment it was previously using. Another
strategy is to simply retain one segment as both the identifier of the
file and the toehold preventing conflicting use of the file.

The possibility of use of a file in different levels of the same
process dictates that VMFA keep track of redundant mapping of a
segment, possibly with different modes of access. In the simplest case
this requires that VMFA keep count of the number of make knowns of a
segment that have not been cancelled by make unknowns. More difficult
is the job of keeping track of concurrent read and write usage of a
segment within a process. For example, suppose a level makes known a
segment of a file for reading, that level is suspended, and another
makes known the segment for writing (assuming that concurrent read and
write is not forbidden). Now the process is registered as both a
reader and a writer, and the user has both read and write access to the
segment. Now VMFA is called to make unknown the segment. Which
registration should it cancel? Since levels are treated in a nested
manner, VMFA should cancel the write registration and change the access
rights back to read-only. For VMFA to do this requires that it know
the history of make knowns, not just the count of the different
categories. We have chosen a strategy which simplifies the
record-keeping of VMFA and provides an important additional benefit. A
request to make known with a different mode of access an already known
segment yields a different address assignment, (that is, the same
segment will now be in two locations, one with read access, one with
write access), and thus VMFA knows by the address it is given to make
unknown which category of use to decrement and eventually cancel. One
consequence, considered a benefit, is that a program which is
interested only in reading a segment will not get write access to the
address it is given for the segment even if a suspended level of its
process has write access to that segment at a different address. Also
a benefit is that VMFA need only keep a usage count of segments, not a
history of different categories of make knowns. The one drawback is
that changing access rights means changing the address of the object,
or rather, that one has two addresses of the same object, one address
for each access category; at worst, this might be a nuisance, at best,

ENVIRONMENT OVERVIEW Page 16

PRIME COMPUTER CONFIDENTIAL

it will contribute to robustness in the face of some kinds of bugs.

Closing a file is implicit in the removal from address space of all
segments of the file. What should “close all” mean? Of course this is
a trick question; “close all” will mean just what it means today:
close all (more or less) of the unit-based file system’s file units.
The question really means “what kinds of general process cleanup
commands should we add with VMFA?” While we haven’t determined the
final form it will take, it is clear that we wish to offer, as a
minimum, the ability to totally re-initialize a process - equivalent to
logging out and back in - and the ability to clear out suspended level
environments without re-initializing the process environment. No doubt
we will discover other useful variations of the cleanup function.

4.4 Atomic Operations

Another significant difference between VMFA and the unit-based file
system is the atomicity of operations with respect to concurrent users.
The indivisble operation in VMFA is the memory reference; the
indivisible operation of the unit-based file system is the PRWF$$ read
or write. Thus, a VMFA user of a shared segment can see a PRWF$$
operation by another process in progress. The policy we have adopted
regarding this situation is to treat the two modes of usage as
indepedent: unit-based file system operations act as they do today,
that is, one PRWF$$ read or write is atomic with respect to another;
and VMFA operations, if they are to make atomic some operation with
larger scope than the memory reference, must be governed by some
mechanism outside the sphere of VMFA, such as a semaphore. Like many
of the design decisions of VMFA, this is a trade-off among complexity,
performance, and utility. In this case we felt that most applications
that require regulation of concurrent access to files rather than the
simpler prevention of any conflicting use of files should use an
appropriate regulatory mechanisms outside of the file system, since the
nature and efficiency of such mechanisms are particularly sensitive to
the actual concurrency regime the application must follow. For this
class of applications the requirement to incorporate other mechanisms
to regulate concurrent use is no imposition. The basic file-level
reader/writer lock is retained with VMFA as this is necessary to
support more complex mechanisms and because it suffices for the typical
casual requirement for concurrency control - prevention of writing
while someone is reading a file.

4.5 File Growth and File Size

There is a fundamental difference in the way the P400 virtual memory
architecture treats the size of segments and the way the file system
treats the size of files. The former supports segment size in units of
1024-word pages; the latter supports file size in units of 16 bit
words.

Another way of characterizing the difference is that using the virtual
memory architecture puts on the application the task of somehow knowing
(by storing in, or associated with the objects) the size and number of
objects in a segment of memory. The unit-based file system takes upon

ENVIRONMENT OVERVIEW Page 17

PRIME COMPUTER CONFIDENTIAL

itself some of that task in telling the application when it has reached
the end of a file when reading and by setting size (on writing) with a
granularity of a word.

We have reconciled these notions in the VMFA implementation by
providing the minimum functions to enable the UBFS (or VMFA-based
applications that interface with UBFS-based applications) to implement
treatment of size to the word in a concise and efficient manner. These
additional functions will not burden with additional overhead an
application using files solely in a way consistent with the virtual
memory architecture.

There are several differences bwteeen the two modes of access which
must be reconciled in this design: the firmware does not distinguish
between read and write references that cause a page fault. (It does,
however, prevent writing to a write-protected segment.) Consequently,
there is no easy way to tell whether a reference beyond the end of a
writable segment is a write-reference and presumably intended to cause
extension of the file, or is a read reference indicating some kind of
error. Now is there any easy way to tell precisely how much to extend
the file, that is, how many words of the page just referenced should be
added to the file - once the page has been added to the file, any part
of it could be referenced without another fault.

You can’t even use the firmware to discover when you hit the
end-of-file reading a read-only segment; it can only tell you if you
have caused a page fault on the last record. This means that you can
refer to a word beyond the end-of-file but within the last physical
record without the firmware detecting it. It doesn’t even mean that we
can use the “page fault on last record” as part of a read protocol
designed to warn a program when it is close to the end-of-file since
the program might not cause a page fault if the file is shared with
another process that happens to cause the page to be read in just
before the program refers to it itself.

Another problem is that you don’t know how long a file is until you
look at its last record. For a DAM file this is only a nuisance: two
or three disk reads will get you the answer; for a SAM file this is
much worse than a nuisance: the whole file must be read to get the
answer. To avoid undue overhead there must be some reasonable way to
find out the required information as the file is processed to avoid a
redundant traversal of the file.

The principal features of the design:

 o Reference beyond the end of a segment with write access will
 extend it. The page fault machinery will give the new last page a
 size of 1024 words for file system purposes.

 o Nothing reasonable can be done, so nothing will be done about
 detecting memory references beyond the end-of-file but still
 within the last record of a file. Thus, such references will not
 change the size recorded in the last record.

ENVIRONMENT OVERVIEW Page 18

PRIME COMPUTER CONFIDENTIAL

 o There is a call to VMFA to set segment size within the last record
 of a file. VMFA-style users (and the unit-based file system
 implementation itself) will use it to trim a file to size for a
 subsequent UBFS-style user.

 o There is a call to VMFA to read the state of size knowledge about
 a segment: the known extent of the file and a flag indicating
 whether reference to the next page would require (or cause, if the
 process has write access) extension of the file. If the latter is
 false then the known extent is the true size of the file. This
 function is used during serial access to a file to discover the
 end-of-file as the file is traversed, thus avoiding extra disk
 operations to determine in advance the file size.

 o There are also an assortment of calls that yield full size
 knowledge of a file. These are made available to avoid the
 nuisance and slightly greater overhead of positioning to the end
 of a file to find its size.

It is important to note that there us a real distinction in treatment
of size between VMFA-style use of files and unit-based file system
style use of files. The size protocol is meant to allow the VMFA user
and the UBFS user to use the same files, but it doesn’t insure that all
mixes of the two methods will always work. Errors might range from a
VMFA-style user not setting the size to the word when a UBFS user
expects it, rather than knowing where the end is by other means, to
subtle problems with simultaneous use: the UBFS uses its N reader, 1
writer lock to prevent other UBFS users from seeing a file in
transitional states between writing and setting the size. A VMFA user
of a file being written can see these transitional states. The best
strategy is not to mix methods of access to files that may be opened
for concurrent reading and writing unless conflict is avoided by means
outside the file system.

4.6 Temporary Storage and the Process Directory

Under VMFA there is no longer a distinct region of the disk reserved
for segments: all paging is to segment portions of a file.
Furthermore, we will encourage explicit creation of temporary segments,
rather than extending the current method of allocating temporary
segments by simply referring to them. Explicit creation and deletion
of segments is a necessary part of the nested nature of levels: the
operating system must perform the assignment of an address at run-time
so that software may coexist within and between levels without
interfering in static assignments of addresses for temporary storage.

The routine to create temporary segments creates the segment requested
in the process directory, making up a name for the file it constitutes.
A multi-segment object (i.e. a temporary object requiring multiple
contiguous addresses) may be created in one call and all the segments
will be in a single file. Naturally, the address assignment will be
performed by VMFA, not the user. The corresponding operation to remove
a temporary segment from address space deletes the segment once there
are no other users of the segment. Ordinarily, a temporary object will

ENVIRONMENT OVERVIEW Page 19

PRIME COMPUTER CONFIDENTIAL

only be used by the process creating it, and there is no need for the
process to know anything about the whereabouts of the process directory
or the name of the file containing a temporary segment. Should a
process need to create a temporary object that it is going to share
with another process it can determine the location in the file system
of the temporary file by calling the operating system and pass that to
another process (as well as changing the access control on the file to
enable another process to access the file). We didn’t make this
especially convenient to do because we felt that multiple users of a
file are more easily coordinated and controlled by agreeing in advance
on the location of a shared object. Better inter-process communication
may change this assumption, and the design certainly doesn’t preclude
our making the exporting of access to a temporary object more
convenient.

The location of a process’s process directory is specified in a user’s
profile, allowing the system administrator to place these directories
to distribute disk traffic, to charge the user for his process
directories’ use of disk space, and to govern size of the process
directory with the quota system.

4.7 Networks

For the present we are proceeding on the principle that virtual memory
access to files is fundamentally a local operation. Transparency with
respect to networks belongs at a higher level, such as data bases or
transaction processing. Network transparency will be retained in the
unit-based file system. The decision to treat VMFA as a local
operation is based on the difficulty of supporting remote concurrent
writing of files in any sensible way at the level of VMFA. We could
relax this constraint somewhat to allow transparency of remote access
by VMFA for single writer versus multiple reader files, but, in
general, it is more efficient to make the location of services
transparent with respect to networks, rathet than the location of
objects, as our experience with FAM indicates. Modification of our
policy in this area should await a more completely thought-out design
of a network architecture.

4.8 Miscellaneous Benefits of the Implementation

The primary benefit of the way we have implemented VMFA is that the
page map of a segment is no longer tied to memory for the life of the
segment. In other words, the implementation can “page out page maps.”
It is essential to make efficient use of wired memory allocated for
page maps because VMFA will use page maps to access all file system
objects. By allocating real memory for a page map only when the object
is in active use we hope to increase the utilization of real memory
more than enough to compensate for the larger number of segments that
will be in the typical process’s address space. Note that it is not
only VMFA that is putting pressure on the size of a process’s virtual
address space: the nesting of levels and use of EPF’s requires larger
address spaces, and there is a general tendency simply to run bigger
programs. We hope that by making the allocation of page maps a
function of use, not existence, of segments that working set will be

ENVIRONMENT OVERVIEW Page 20

PRIME COMPUTER CONFIDENTIAL

primarily a function of the nature of reference patterns, as it should
be, rather than increase as an artifact of our present fixed allocation
of page maps. Observations of utilization of page maps on current
systems is encouraging.

ENVIRONMENT OVERVIEW Page 21

PRIME COMPUTER CONFIDENTIAL

5 Miscellaneous Topics

5.1 An Alternative Way to Detect the Boundary of a Program Invocation

The method of detecting the boundary of a program invocation hinges on
the discovery of the need to re-initialize a library by arranging that
there be a fault when a program attempts to use it. This requires that
re-initializing an EPF includes unsnapping its outward links so that
every time an EPF is used within a level its outward references will be
detected and bound, and the routine called tested to see if
initialization is required. This also has the property that the change
in the search list will be reflected in all future invocations of a
program, even if it has been invoked before at the level, since all
previously snapped links are undone evert time the program is invoked.
While this is a desirable property, it is not the most efficient way to
obtain that property if you assume that the search list rarely changes,
that is, if you assume that if a particular procedure satisfied the
reference the last time, it probably will next time, too. It would be
more efficient to put the overhead of supporting changing a search list
on the change operation, the infrequent one, rather than the link
operation, the frequent one. Another property of this boundary
detection method is that if there are multiple links to the same
program, each will cause a fault and in turn determine whether the
library needs to be initialized for the current program invocation.
This puts the burden of asking whether the library needs
re-initialization on the many - the callers - rather than on the few -
the objects of the calls. Furthermore, the object of the call knows
(in some sense) who he is, whereas the caller has to look it up
somehow.

A scheme that would reverse both these choices works as follows. The
first initialization of a library at a level would be detected and
performed as in the current scheme: when a program attempted to link
to a library its static storage would be allocated and initialized.
Subsequent uses of the once-initialized library would be detected
differently, however. Every entry to a library would begin with a
reference to a single indirect pointer shared by all the entries in the
library. The fault bit in the indirect pointer for each library that
had been allocated storage at a command level would be set before every
program invocation. Encountering the fault would thus indicate use of
the library by a new program invocation, and the command environment
would then re-initialize the static storage and turn off the fault bit.
Thereafter in that invocation, any reference that had been snapped in a
previous invocation to any entry to the library would not cause a fault
on entry to the library. New links to a library require only a check
as to whether the library has ever been initialized at the current
level (which would have to be performed anyway to find the entry
address): if so, just link and return - the internal reference will
cause re-initialization if necessary. If there is as yet no static
storage for the library at this level, allocate and initialize the
library. (The first initialization could leave the fault bit off to
avoid an unnecessary fault.) This method trades setting a bit in each
initialized library’s static storage before every command for the

ENVIRONMENT OVERVIEW Page 22

PRIME COMPUTER CONFIDENTIAL

alternative method’s repeated searching of the library list on every
new reference to a library from a library or otherwise repeatedly-used
EPF retained in address space. Furthermore, it trades a memory
reference (to potentially cause the fault), which can also contain the
identification of the library being entered, for a table lookup. In
this alternative method a change in a search list would necessitate
re-initializing (or simply discarding) static storage for EPF’s in
completed programs, that is, EPF’s not part of a current (suspended or
executing) program invocation. In both schemes a change in a search
order would present the possibility of inconsistent behavior of a
suspended program invocation; the safest thing to do in either scheme
is to recommend process re-initialization when changing the library
search list except in a carefully controlled debugging environment.

The reasons we did not take this approach at this time are that it
involves changes to the translators (to include the reference in every
entry), which would have widened the impact and dependencies of the
project; the benefits would be significant only for repeated uses of a
small roster of programs and libraries; and the alternative scheme can
coexist with the chosen scheme and thus be incorporated later in a
compatible manner (the “PRIME Way”).

5.2 Relation to Static-Mode

Static-mode programs - those programs written with static address
assignments - will not require any changes to continue working as they
do today. There is a slight improvement in the isolation of the
effects of running a static-mode program in that, with recursive-mode
libraries (which can be used by either static- ir recursive-mode
programs), running a static-mode program will not interfere with a
suspended recursive-mode program by re-initializing the static storage
of libraries used by the suspended program. Of course, static-mode
programs will continue to conflict with each other in their use of
statically-assigned memory.

Static-mode programs which allocate temporary segments by simply
referring to them are still a potential hazard to recursive-mode
programs, but we will attempt to minimize the hazard by biasing VMFA’s
allocation of addresses away from the region typically used by
static-mode programs today.

